Product Description

 

Product Description

Product detail info:

Product Type
 
Window Lift Motor Glass lifter Motor  Door Lifting Motor 
Application
 
Glass lift motor,door lifting motor for  Car,Bus,Coach
Car Make
 
Glass lift motor,door lifting motor for  Car,Bus,Coach
Car Fitment 
 
Glass lift motor,door lifting motor for  Car,Bus,Coach
MOQ
 
1000PCS
Warranty
 
One year
Certification
 
ISO9001,IATF16949
Price Term
 
FOB
Payment Term
 
T/T
Delivery time
 
25 days after receiving the deposit
Packages
 
Neutral packing 
Port of Loading
 
HangZhou 
Shipping Method
 
By sea,By air,By Carrier

 

Connecting:

EMC:

Motor Performance:

Shaft:

 

Company Profile

Company Introduction:

   We are specialising in production of window regulator,window lifter motor,Established in 1992,we have covered most of car’ type,like BENZ,BMW,FORD,GM,CHRYSLER,HONDA,TOYOTA,AUDI,MAZDA,VW,LAND ROVER,SKODA,HYUNDAI and so on.
We have a professional developing and technical evaluation team. We grasp whole production process, From material to final products , product develop, mould making, product design, fixture designing.We make strict quality control,and have great competitive advantage .

1,Customized Products:We will try our best to meet requirements of customer.

2,Quality Management:We have standardized production process and strict quality testing.

3,Service Team:Our engineers online reply and provide a full range of products solutions.
4,Fast Delivery:Our lead time is 7-25days.Most of our products are enjoying exporting well to all over the world, like North America, South Africa, Europe, Russia,Asia,Korea,Middle East etc, and we also get the satisfactory and good reputation from our clients at home and abroad.

Packaging & Shipping

 

 FAQ:
 

Q:1.How do you control products’ quality?
 

A:We have strictly QC control system and professional testing machines 100% test every product before delivery.
 

Q:2.Can you produce according to customers’design?
 

A:Sure,OEM service available.
 

Q:3.What’s your MOQ?
 

A:The MOQ can be only 1 piece.
 

Q:4.What’s your payment term?
 

A:We usually accept T/T(30% deposit,the balance before delivery.) Samples cost can be paid by Paypal.
 

Q:5.Can I get a sample for reference?
 

A:We provide free samples for testing,you need to pay the sample courier cost.
 

Q:6.Would you accept to use our logo?
 

A:If you have good quantity,we can make your logo.
 

Q:7.What is your delivery time?
 

A:Usually it takes 7-25 working days depends on items and quantity.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Technical Support
Warranty: 1 Year
Type: Window Regulator
Glass: Windshield
Mgnt Certification: ISO9001, IATF16949
Main Market: North America
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

What are the main components of a DC motor, and how do they contribute to its functionality?

A DC (Direct Current) motor consists of several key components that work together to enable its functionality. Each component plays a crucial role in the operation of the motor. Here’s a detailed explanation of the main components of a DC motor and their contributions:

1. Stator:

The stator is the stationary part of the motor. It typically consists of permanent magnets or electromagnets that produce a fixed magnetic field. The stator’s magnetic field interacts with the rotor’s magnetic field to generate the required torque for motor rotation. The stator provides the foundation for the motor’s magnetic field and contributes to its overall stability and efficiency.

2. Rotor:

The rotor is the rotating part of the motor and is connected to the motor’s output shaft. It contains coils or windings that carry the armature current. The rotor’s windings interact with the stator’s magnetic field, resulting in the generation of a mechanical force that causes the rotor to rotate. The rotor’s movement is responsible for converting electrical energy into mechanical motion, enabling the motor to perform its intended function.

3. Armature:

The armature is the core of the rotor that holds the armature windings. The armature windings are typically made of copper wire and are evenly spaced around the armature. When a current passes through the armature windings, a magnetic field is created around them. This magnetic field interacts with the stator’s magnetic field, resulting in the generation of a torque that drives the rotor’s rotation. The armature is a critical component that facilitates the conversion of electrical energy into mechanical energy.

4. Commutator:

The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other. The commutator plays a vital role in the DC motor’s operation by providing the necessary electrical connections to the armature windings. As the rotor spins, the brushes make physical contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Brushes:

The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings. The brushes supply the current to the armature windings through the commutator, allowing for the creation of the magnetic field necessary for motor operation. The brushes need to maintain proper contact with the commutator to ensure efficient electrical transmission and reliable motor performance.

6. Housing or Frame:

The housing or frame of the DC motor encloses and supports all the internal components. It provides structural integrity, protects the motor from external elements, and helps dissipate heat generated during operation. The housing or frame also serves as a mounting point for the motor, allowing it to be securely installed in various applications.

By understanding the main components of a DC motor and their contributions, one can gain insights into how each part works together harmoniously to achieve the desired motor functionality.

dc motor

What is the significance of back EMF (electromotive force) in DC motor performance?

The significance of back EMF (electromotive force) in DC motor performance is crucial to understanding the behavior and operation of DC motors. Back EMF is an inherent characteristic of DC motors and plays a pivotal role in their efficiency, speed regulation, and overall performance. Here’s a detailed explanation of the significance of back EMF in DC motor performance:

When a DC motor operates, it generates a voltage known as back EMF or counter electromotive force. This voltage opposes the applied voltage and is caused by the rotation of the motor’s armature within the magnetic field. The back EMF is directly proportional to the rotational speed of the motor.

The significance of back EMF can be understood through the following aspects:

1. Speed Regulation:

Back EMF is crucial for regulating the speed of a DC motor. As the motor rotates faster, the back EMF increases, which reduces the effective voltage across the motor’s armature. Consequently, the armature current decreases, limiting the motor’s speed. This self-regulating characteristic helps maintain a relatively constant speed under varying load conditions. It allows the motor to deliver the required torque while preventing excessive speed that can potentially damage the motor or the driven equipment.

2. Efficiency:

Back EMF plays a significant role in the efficiency of a DC motor. When the motor is loaded and drawing current, the power supplied to the motor is the product of the armature current and the applied voltage. However, the electrical power converted into mechanical power is reduced by the power consumed by the back EMF. The back EMF represents the energy returned to the power supply as the motor generates its own voltage. By reducing the effective voltage across the motor, it helps minimize power losses due to electrical resistance and improves the overall efficiency of the motor.

3. Motor Protection:

The presence of back EMF also provides a level of protection to the motor. When a DC motor is operating and the load on the motor suddenly decreases, such as when the driven equipment is disconnected, the motor’s speed can increase rapidly. This increase in speed leads to a higher back EMF, which reduces the armature current and prevents excessive current flow. By limiting the current, the back EMF helps protect the motor from overloading and potential damage.

4. Voltage Regulation:

Back EMF affects the voltage regulation in a DC motor. When the motor is operating, the back EMF opposes the applied voltage. As the motor load increases, the voltage drop across the armature resistance and other internal losses also increase. The back EMF helps compensate for these voltage drops, ensuring that the motor receives an adequate voltage to maintain its performance and torque output.

5. Control and Dynamic Response:

Back EMF provides valuable information for motor control and dynamic response. By measuring the back EMF voltage, the rotational speed of the motor can be estimated, allowing for precise speed control and feedback. This information is crucial for applications that require accurate speed regulation, such as robotics or industrial automation.

In summary, the significance of back EMF in DC motor performance cannot be overstated. It influences speed regulation, efficiency, motor protection, voltage regulation, and control capabilities. By understanding and utilizing the inherent characteristics of back EMF, engineers can design and optimize DC motor systems for various applications, ensuring reliable and efficient operation.

dc motor

What are the environmental implications of using DC motors, particularly in green technologies?

DC (Direct Current) motors offer several environmental benefits when used in green technologies. Their characteristics and operational advantages contribute to reducing environmental impact compared to other motor types. Here’s a detailed explanation of the environmental implications of using DC motors, particularly in green technologies:

1. Energy Efficiency:

DC motors are known for their high energy efficiency. Compared to AC (Alternating Current) motors, DC motors generally have lower energy losses and can convert a larger proportion of electrical input power into mechanical output power. This increased efficiency results in reduced energy consumption, leading to lower greenhouse gas emissions and decreased reliance on fossil fuels for electricity generation.

2. Renewable Energy Integration:

DC motors are well-suited for integration with renewable energy sources. Many green technologies, such as solar photovoltaic systems and wind turbines, produce DC power. By utilizing DC motors directly in these systems, the need for power conversion from DC to AC can be minimized, reducing energy losses associated with conversion processes. This integration improves the overall system efficiency and contributes to a more sustainable energy infrastructure.

3. Battery-Powered Applications:

DC motors are commonly used in battery-powered applications, such as electric vehicles and portable devices. The efficiency of DC motors ensures optimal utilization of the limited energy stored in batteries, resulting in extended battery life and reduced energy waste. By utilizing DC motors in these applications, the environmental impact of fossil fuel consumption for transportation and energy storage is reduced.

4. Reduced Emissions:

DC motors, especially brushless DC motors, produce fewer emissions compared to internal combustion engines or motors that rely on fossil fuels. By using DC motors in green technologies, such as electric vehicles or electrically powered equipment, the emission of greenhouse gases and air pollutants associated with traditional combustion engines is significantly reduced. This contributes to improved air quality and a reduction in overall carbon footprint.

5. Noise Reduction:

DC motors generally operate with lower noise levels compared to some other motor types. The absence of brushes in brushless DC motors and the smoother operation of DC motor designs contribute to reduced noise emissions. This is particularly beneficial in green technologies like electric vehicles or renewable energy systems, where quieter operation enhances user comfort and minimizes noise pollution in residential or urban areas.

6. Recycling and End-of-Life Considerations:

DC motors, like many electrical devices, can be recycled at the end of their operational life. The materials used in DC motors, such as copper, aluminum, and various magnets, can be recovered and reused, reducing the demand for new raw materials and minimizing waste. Proper recycling and disposal practices ensure that the environmental impact of DC motors is further mitigated.

The use of DC motors in green technologies offers several environmental benefits, including increased energy efficiency, integration with renewable energy sources, reduced emissions, noise reduction, and the potential for recycling and end-of-life considerations. These characteristics make DC motors a favorable choice for sustainable and environmentally conscious applications, contributing to the transition to a greener and more sustainable future.

China Best Sales 12V DC Car Window Glass Lifter Motor Bus Coach Door Lift Motor   vacuum pump adapter	China Best Sales 12V DC Car Window Glass Lifter Motor Bus Coach Door Lift Motor   vacuum pump adapter
editor by CX 2024-05-14