Product Description

Mini 12V 24V 48V Volt DC water pump 12v dc motor for irrigation

Product Description

ZQB dc submersible pump submersible pump price 12v dc water pump compact shape, high efficiency and energy saving, easy to use, trolleys, cars, ships, can be used, a plug can water, DC voltage, high safety, large flow, basic to meet the needs of watering, the use of large impeller, large flow, stable drainage, and can greatly improve the pump head, to meet the irrigation

Product Parameters

  roduct Paramenters

Model

Outlet

Flow rate

Head

Power

voltage

12v

25mm

3m³/h

7m

0.13kw

12v

24v

25mm

3m³/h

9m

0.18kw

24v

48v

25mm

6m³/h

13m

0.3kw

48v

60v

25mm

8m³/h

18m

0.35km

60v

ZQB dc submersible pump submersible pump price 12v dc water pump Attention:

Due to the winter cold and rain and snow weather the weather cold, frozen cold climate cause equipment frost crack happened frequently, in order to ensure the normal operation of equipment safety and, frost and thaw measures is established, the specific as follows:

(1) for the pump to add thermal insulation material to prevent freezes water pump

(2) will be temporarily without pump body empty, when using water again, from the icy frost crack water pump

(3) the basement pump room CHINAMFG and didn’t have to do a good job in the main door of hvac, unfinished basement pump room, wind tunnel must be
blocked.

(4) for our company all equipment factory with water pressure test, so the factory equipment, pump body and management of valves in water, such as the equipment is not installed, please everyone be sure to do drainage measures to prevent frost crack.

(5) found that freezes water pump, do not start the pump, use hot water or boiling water into the water pump nternalization, ice or heat pump shell

 

Product Details

Outlet

Pagoda design, you can easily jam the water pipe to prevent the water pipe from falling off

Pure copper sealing sleeve

Using copper cable sealing sleeve, built-in waterproof leakage gasket, better protect the rotor coil in the body

metal grille

Metal mesh cover for the base, wear-resistant and drop-resistant, not easy to deform, strong and firm

All copper motor

The motor adopts high-precision steel bearings and pure copper magnetic conductive coils, which can ensure strong power and stabilize the temperature without burning the motor.

 

Product Application

ZQB dc submersible pump submersible pump price 12v dc water pump due to small volume, light weight, more suitable for agricultural underground pumping, irrigation and drainage of farmland, garden watering, household water, can also be used to discharge industrial water, construction water supply and drainage and CHINAMFG and other occasions

Company Profile

Certifications

Obtain patent certificate
In 2007, under the research and development of enterprise technical personnel, we applied for the utility model patent of water pump and obtained the patent certificate; In the same year, many kinds of water pumps of our company passed the test of provincial technical department and issued the test report; Participated in HangZhou 2007 china agricultural machinery expo and began to face the whole domestic market.

 

Packaging & Shipping

 

Packing: The packaging of our products will be wrapped and sealed with plastic film, which can prevent bumps and scratches on the product surface. Transmission products are separated by plastic bags or cardboard to prevent the products from colliding with each other and causing surface scratches. The packaging is in wooden boxes.

Shipping: The transportation method is generally used by ship, and the protection during ransportation is guaranteed. The goods will be delivered to the designated location as required by the demander, and delivered as required.A variety of shipping methods for you to choose: By sea / By air / By car / By train
 

FAQ

Q1. What are your terms of packing?

A: Generally,wooden carton ,customer request .
 

Q2. What are your terms of payment?

A: T/T 30%as deposit, and 70% before delivery.
 

Q3. How about your delivery time?

A: Generally, it will take 7-30days after receiving your deposit. The specific delivery time

depends on the items and the quantity of your order.
 

Q4. Can you produce according to the samples?

A: Yes, we can produce by thesamples customer confirmed.
 

Q5. What is your sample policy?

A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
 

Q6. Do you test all your goods before delivery?

A: Yes, we have 100%test before delivery
 

Q7: How do you make our business long-term and good relationship?

A:1. We keep good quality and competitive price to ensure our customers benefit ;

2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provided
Warranty: 1year
Max.Head: 10-30m
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

What are the main components of a DC motor, and how do they contribute to its functionality?

A DC (Direct Current) motor consists of several key components that work together to enable its functionality. Each component plays a crucial role in the operation of the motor. Here’s a detailed explanation of the main components of a DC motor and their contributions:

1. Stator:

The stator is the stationary part of the motor. It typically consists of permanent magnets or electromagnets that produce a fixed magnetic field. The stator’s magnetic field interacts with the rotor’s magnetic field to generate the required torque for motor rotation. The stator provides the foundation for the motor’s magnetic field and contributes to its overall stability and efficiency.

2. Rotor:

The rotor is the rotating part of the motor and is connected to the motor’s output shaft. It contains coils or windings that carry the armature current. The rotor’s windings interact with the stator’s magnetic field, resulting in the generation of a mechanical force that causes the rotor to rotate. The rotor’s movement is responsible for converting electrical energy into mechanical motion, enabling the motor to perform its intended function.

3. Armature:

The armature is the core of the rotor that holds the armature windings. The armature windings are typically made of copper wire and are evenly spaced around the armature. When a current passes through the armature windings, a magnetic field is created around them. This magnetic field interacts with the stator’s magnetic field, resulting in the generation of a torque that drives the rotor’s rotation. The armature is a critical component that facilitates the conversion of electrical energy into mechanical energy.

4. Commutator:

The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other. The commutator plays a vital role in the DC motor’s operation by providing the necessary electrical connections to the armature windings. As the rotor spins, the brushes make physical contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Brushes:

The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings. The brushes supply the current to the armature windings through the commutator, allowing for the creation of the magnetic field necessary for motor operation. The brushes need to maintain proper contact with the commutator to ensure efficient electrical transmission and reliable motor performance.

6. Housing or Frame:

The housing or frame of the DC motor encloses and supports all the internal components. It provides structural integrity, protects the motor from external elements, and helps dissipate heat generated during operation. The housing or frame also serves as a mounting point for the motor, allowing it to be securely installed in various applications.

By understanding the main components of a DC motor and their contributions, one can gain insights into how each part works together harmoniously to achieve the desired motor functionality.

dc motor

What role does commutation play in the operation of a DC motor?

In the operation of a DC (Direct Current) motor, commutation plays a crucial role in ensuring the continuous rotation of the motor and the conversion of electrical energy into mechanical motion. It is the process by which the direction of the current in the armature winding is periodically reversed to maintain a constant torque and facilitate the rotation of the motor. Here’s a detailed explanation of the role of commutation in the operation of a DC motor:

Commutation is necessary in a DC motor because the magnetic field generated by the armature winding needs to be constantly aligned with the stator’s magnetic field for efficient torque production. The stator of a DC motor typically consists of permanent magnets or electromagnets that create a fixed magnetic field. The armature winding, located on the rotor, produces a magnetic field that interacts with the stator’s field to generate torque.

The commutation process is achieved through the use of a commutator and brushes. The commutator is a cylindrical ring with multiple segments, while the brushes are conductive contacts that make physical contact with the commutator segments. The armature winding is connected to the commutator, and as the rotor spins, the brushes maintain contact with different segments.

As the rotor rotates, the commutator and brushes ensure that the direction of the current in the armature winding is reversed at specific intervals. This reversal of current flow is necessary to maintain a consistent torque in the same rotational direction. Without commutation, the torque generated by the motor would fluctuate in both magnitude and direction, leading to instability and erratic motor behavior.

The commutation process involves two stages: mechanical commutation and electrical commutation.

1. Mechanical Commutation: As the rotor rotates, the brushes make contact with different segments of the commutator. The segments are insulated from each other to prevent short circuits. When the brushes move from one segment to another, the current flowing through the armature winding is switched to a different coil or set of coils. This mechanical switching ensures that the magnetic fields produced by the winding are properly aligned with the stator’s field, resulting in continuous torque production.

2. Electrical Commutation: The reversal of current in the armature winding is achieved through electrical commutation. When the brushes make contact with a new commutator segment, the current flow in the winding is redirected to maintain the desired torque direction. The timing and sequence of the current reversal are critical to ensure smooth and efficient motor operation.

The commutation process in a DC motor is a dynamic and continuous operation. It allows for the conversion of electrical energy into mechanical motion by providing a consistent torque output. The efficiency and performance of the motor are greatly influenced by the quality and effectiveness of the commutation process.

In summary, commutation plays a vital role in the operation of a DC motor by ensuring the continuous rotation of the motor and the production of consistent torque. It involves the mechanical and electrical switching of the current direction in the armature winding, facilitated by the commutator and brushes.

dc motor

How does the size and power rating of a DC motor affect its suitability for different tasks?

The size and power rating of a DC (Direct Current) motor play crucial roles in determining its suitability for different tasks and applications. The size and power rating directly impact the motor’s performance characteristics, including its torque output, speed range, efficiency, and overall capabilities. Here’s a detailed explanation of how the size and power rating of a DC motor affect its suitability for different tasks:

Size of DC Motor:

The size of a DC motor refers to its physical dimensions, including its diameter, length, and overall volume. The size of the motor influences its ability to fit into specific spaces or applications with space constraints. Here are some key considerations regarding the size of a DC motor:

1. Space Limitations: In applications where space is limited, such as small robotic systems or compact machinery, smaller-sized DC motors are preferred. These motors provide a more convenient and efficient integration into the overall system design.

2. Weight Constraints: Certain applications, such as drones or lightweight robots, may have strict weight limitations. Smaller-sized DC motors are generally lighter, making them more suitable for weight-sensitive tasks where minimizing the overall system weight is essential.

3. Cooling and Heat Dissipation: The size of a DC motor can impact its ability to dissipate heat generated during operation. Smaller-sized motors may have less surface area for heat dissipation, which can lead to increased operating temperatures. In contrast, larger-sized motors typically have better heat dissipation capabilities, allowing for sustained operation under heavy loads or in high-temperature environments.

Power Rating of DC Motor:

The power rating of a DC motor refers to the maximum power it can deliver or the power it consumes during operation. The power rating determines the motor’s capacity to perform work and influences its performance characteristics. Here are some key considerations regarding the power rating of a DC motor:

1. Torque Output: The power rating of a DC motor is directly related to its torque output. Higher power-rated motors generally provide higher torque, allowing them to handle more demanding tasks or applications that require greater force or load capacity. For example, heavy-duty industrial machinery or electric vehicles often require DC motors with higher power ratings to generate sufficient torque for their intended tasks.

2. Speed Range: The power rating of a DC motor affects its speed range capabilities. Motors with higher power ratings can typically achieve higher speeds, making them suitable for applications that require rapid or high-speed operation. On the other hand, lower power-rated motors may have limited speed ranges, making them more suitable for applications that require slower or controlled movements.

3. Efficiency: The power rating of a DC motor can impact its efficiency. Higher power-rated motors tend to have better efficiency, meaning they can convert a larger proportion of electrical input power into mechanical output power. Increased efficiency is desirable in applications where energy efficiency or battery life is a critical factor, such as electric vehicles or portable devices.

4. Overload Capability: The power rating of a DC motor determines its ability to handle overloads or sudden changes in load conditions. Motors with higher power ratings generally have a greater overload capacity, allowing them to handle temporary load spikes without stalling or overheating. This characteristic is crucial in applications where intermittent or varying loads are common.

Overall, the size and power rating of a DC motor are important factors in determining its suitability for different tasks. Smaller-sized motors are advantageous in space-constrained or weight-sensitive applications, while larger-sized motors offer better heat dissipation and can handle heavier loads. Higher power-rated motors provide greater torque, speed range, efficiency, and overload capability, making them suitable for more demanding tasks. It is crucial to carefully consider the specific requirements of the application and choose a DC motor size and power rating that aligns with those requirements to ensure optimal performance and reliability.

China Best Sales Mini 12V 24V 48V Volt DC Water Pump 12V DC Motor for Irrigation   with Great quality China Best Sales Mini 12V 24V 48V Volt DC Water Pump 12V DC Motor for Irrigation   with Great quality
editor by CX 2024-04-22